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Summary 

Deep convolutional networks (DCN) have been successfully 
applied to seismic data denoising by training on some large 
datasets. The excellent denoising performance of 
convolutional networks is mainly imputed to their powerful 
ability to learn seismic data priors from some training 
samples. However, “clean” seismic datasets are very difficult 
to obtain, which greatly limits the widespread use of 
convolutional networks. In this abstract, we propose an 
unsupervised denoising method based on DCNs. We show 
that the structure of a generator network itself can be used as 
the prior knowledge for seismic data denoising. Both pre-
stack field seismic data example and post-stack field seismic 
data example demonstrate the validity of our methods. 

Introduction 

Suppressing random noise has always been a hot topic in 
seismic signal processing because it will improve results of 
seismic inversion and other processes. Pre-stack denoising 
and post-stack denoising are two typical methods for 
suppressing random noise. Pre-stack denoising is performed 
on the original seismic records or various gatherings, such as 
common-reflection-point (CRP) gathers, and it provides a 
good foundation for the following pre-stack processing 
methods such as velocity analysis and deconvolution 
processing. Post-stack denoising can further suppress 
random noise and improve the signal-to-noise ratio.  

In order to suppress random noise in seismic data, many 
advanced denoising techniques have been proposed. 
Generally speaking, it can be divided into learning-free 
methods and learning-based methods.  

Learning-free methods are general to handle different 
seismic data denoising problems and have clear physical 
meaning. Therefore, they have been successfully applied to 
denoise seismic data. Principle component analysis (Hagen, 
1982), singular value decomposition (Bekara and Van der 
Baan, 2007) and the Cadzow filter (Trickett, 2008) are some 
typical learning-free random noise denoising methods which 
use the correlation between seismic data. Sparse 
regularization in the transform domain, such as wavelet 
domain (Jian et al., 2006) and curvelet domain (Neelamani 
et al., 2008), was also proposed to suppress random noise and 
achieved good results in practical application. However, they 
have some common shortcomings. On the one hand, the 
above methods need prior knowledge to construct models. 
The hand-crafted prior may not be strong enough so that they 

cannot sufficiently capture some complicated structures of 
field seismic data, which reduced their denoising 
performance. On the other hand, they are time-consuming in 
the process of model optimization. 

Learning-based methods can automatically learn the 
knowledge needed to suppress random noise from datasets 
and achieve great denoising performance. As one typical 
representative of the learning-based methods, DCNs have 
attracted the attention of many researchers. Liu et al. (2018) 
constructed some training sample datasets by a complex 
workflow and trained a 3D-DnCNN to denoise post-stack 
seismic data. More arc-like random noise can be suppressed 
by 3D-DnCNN. Li et al. (2018) used the LTFD method to 
obtain labels in advance and trained a deep residual learning 
network. The residual network can successfully denoise the 
scattered ground-roll noise. Although DCNs can achieve 
satisfying denoising result for seismic data, there are several 
issues that may limit its further promotion. The most 
important problem is that it requires a lot of training samples, 
which is very difficult to satisfy in many cases. Secondly, the 
generality of well-trained networks is limited, which means 
that its denoising function for large-scale seismic data is 
likely to fail.  

In this abstract, we propose a new denoising method for 
seismic data which combines the merits of the two 
aforementioned learning-free and learning-based methods. 
Inspired by Ulyanov et al. (2018), we use an untrained 
generator network with some randomly initialized inputs to 
learn noisy seismic data. The generator network offers high 
impedance to the noise and low impedance to the valid signal. 
Although the final output of the network is the same noisy 
seismic data, the generator network can obtain different 
intermediate results in the process of learning. Therefore, we 
can select the specific number of iterations in the 
optimization process as denoising results by using early stop 
to avoid overfitting. We found that the network has some 
satisfying denoising effects on pre-stack and post-stack 
datasets, especially for post-stack arc-like noise. 

Method 

In this section, we present a novel denoising method based 
on the deep generator network. Unlike previous learning-
based methods, the method we proposed does not require the 
label dataset. Firstly, we investigate the network architecture 
used in this abstract. Then, our network is trained to fit noisy 
dataset. With the help of the early stop, the network can 
output one denoised seismic dataset. 
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Network architecture   
   
The seismic data, which is contaminated by random noise, 
can be expressed as : 
 0x =x+n   (1) 

where x  is the valid signal, 0x  is the noisy signal, and n  is 

the random noise. The basic idea of the generator network is 
to map a code vector z  to seismic data x  as follows: 

  x=f z   (2) 

where z is a fixed randomly initialized vector,   is the 
network parameters including the weights and bias of the 
convolutional filters in the network and   f  stands for the 

network architecture. Then, we build the reconstruction 
problem model: given seismic data 0x , we want to find the 

   to rebuild 0x  as follows: 

     0argmin ; , 


 
  = E f z x x f z   (3) 

where   0;E f z x  is an energy function used to measure 

the differences between  f z  and 0x . In this abstract, 

  0;E f z x  is formulated as follows: 

      2

0 0; .  E f z x = f z x   (4) 

An U-Net type network including several convolutional 
layers, downsampling layers, upsampling layers, batch 
normalization, and skip-connections layers are adopted in 
this abstract. As shown in Figure 1, the network has 5 depths. 
The number of filters increases from 8 to 128 with the 
increase of depth- i , while the output size of each layer 
decreases by half with the increase of depth- i . This 
enhances the network's ability to extract some features at 
different scales and compromises calculation cost. In order 
to weaken the gradient vanishing and speed up network 
training, we use some skip connections at depth-4 and depth-
5. As for downsampling and upsampling technique, we 
simply use the strides implemented within the convolution 
process and bilinear upsampling, respectively. In addition, 
reflection paddings instead of zero paddings in convolution 
layers are adopted in order to keep the output size the same 
as the input size.  
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Figure 1: The network structure of our denoising method. 
 
Model training   

Seismic data is usually three-dimensional (3D) or higher. 
However, our network is two-dimensional (2D). We select 
2D slices from 3D seismic dataset and denoise them slice by 
slice. At each denoising process, z  is fixed and randomly 
initialized with the uniform noise between 0 and 0.1. 
 
In order to find    in equation (3), we use ADAM optimizer 

to iteratively solve the optimization problem. Given almost 
any seismic data 0x , the network can find optimal    to 

recovery it after enough number of iterations. However, 
although the network can finally fit almost any seismic data, 
the process of iterative solution is different.  

 
Figure 2: The optimization process of reconstructing noisy synthetic 
seismic data. 
 
We take the reconstruction problem of noisy synthetic 
seismic data as 0x  to illustrate the phenomenon as shown in 

Figure 2. At the start stage of the optimization process 
(corresponds to a very small number of iteration), the output 
of the network cannot reconstruct the target 0x  well. As the 

number of iterations increases, the resulted approximation 
recreates the shape of the objects but still corrupted. As the 
iteration process continues, there are only the valid signal 
and very little noise in the output of the network. The above 
optimization process shows that the network resists “bad" 
solutions and tends to generate the seismic valid signal. To 
demonstrate it, we do an experiment by taking random noise 
and seismic valid signals as different choices for 0x , as 

shown in Figure 3. Obviously, the valid signal converges 
much faster than noise, which means the network offers high 
impedance to noise and low impedance to valid signals. 
Therefore, there is a range of iterations in which the network 
fits the effective signal well, but it has not yet begun to fit the 
noise. By choosing the appropriate number of iterations, the 
network can realize the function of denoising and output the 
denoised seismic valid signal. 
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Figure 3: Learning curves for the reconstruction task using: seismic 
valid signal, random noise, and noisy seismic dataset. 
 
Examples 
 
We tested the denoising performance of our network on one 
pre-stack and post-stack field dataset, respectively. Figure 4 
shows the denoising result of a CRP gather. The Cadzow 
filter method is applied to the CRP gather as shown in Figure 
4b and Figure 4c. It can be seen that the random noise is 
successfully removed from the original gather. The 
denoising performance of our method is shown in Figure 4d 
and Figure 4e. It can be observed that our method is better 
than the Cadzow filter since it removes more random noise  
and has greater fidelity.  

Figure 5 shows a denoising result for a seismic profile from 
a post-stack seismic dataset in Daqing Oilfield. It can be seen 
that random noise has been removed effectively. In addition, 
arc-like noise that is difficult to handle by the conventional 
method is suppressed well. The above two experiments 
prove the validity of our method. 
 
Conclusions 
 
In this abstract, we propose a random noise removal strategy 
in seismic data based on a generator network. Learning-
based methods usually require a large amount of samples. On 
the contrary, our method only utilizes the noisy seismic data 
for denoising. We use the generator network to reconstruct 
the noisy seismic data and obtain the denoised seismic data 
in the intermediate process of optimization iteration. Two 
field seismic data examples demonstrate the validity of our 
method. In addition, our method has a strong ability to 
suppress arc-like noise of post-stack seismic data. 
 

Acknowledgements 
 
The research was funded by National Natural Science 
Foundation of China (41774135, 41504092, 41504093), 
National Key Research and Development Program of China 
(2017YFB0202902), and the Fundamental Research Funds 
for the Central Universities. We would like to thank Daqing 
oilfield for providing the dataset. 

 

 
Figure 4: Denoising results for a pre-stack CRP gather. (a) an original gather. (b) denoised by Cadzow filter. (c) the noise removed by Cadzow 
filter. (d) denoised by our method. (e) the noise removed by our method. 
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Figure 5: Denoising results for a post-stack profile. (a) original seismic data. (b) denoised by our method. (c) the noise removed by our method. 
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